Skip to content

Posts from the ‘Biotechnology’ Category

There Will Be No “Mars Generation” Without These Technologies

NASA is set to send astronauts to orbit Mars and return them safely by the mid 2030s. And a manned landing on the Red Planet will soon follow. However, this work will be in vain if health technology does not advance.

My parents were members of the Apollo generation. The amazing accomplishment of putting men on the Moon defined their era, stretching the boundaries of what humanity can achieve. But after the last Moon landing, no more exciting breakthroughs emerged. Global attention to space declined. Until now.

Visionaries like Elon Musk and Richard Branson are making spaceflight exciting again – turning our children into the Mars generation. Indeed, NASA is set to send astronauts to orbit Mars and return them safely by the mid 2030s. And a manned landing on the Red Planet will soon follow. However, this work will be in vain if health technology does not advance.

THE HAZARDS OF GETTING MAN TO MARS

1

Image credit: NASA

The trip to Mars takes around seven months, which is a only a little longer than the time astronauts spend on the International Space Station; however, counting their mission, orbit around Mars, landing, and return, the journey will take years.

Spaceflight has a serious effect on astronauts. Variations in temperature and radiation levels, motion sickness, losing bone and muscle mass despite doing exercises, disruption of vision and taste…all of these cause health issues, not to mention the psychological consequences of space travel.

Unfortunately, today, our health can only be effectively monitored by sensors that, at the present time, fill a room. Treating an injury such as a broken bone—a simple matter on Earth—requires medical manufacturing capabilities, capabilities that we don’t have on the Red Planet.

The technologies we need to solve the aforementioned issues exist, but they are in their infancy. Telemedicine is inaccurate and unregulated; genome sequencing is used in the rarest of cases and only by top medical institutions; 3D printing in medicine is the playground of citizen scientists, but has yet to advance into a viable and effective method of treatment.

The sad fact is, we don’t stand a chance of getting to Mars without a booming digital health industry. With that in mind, here are the top inventions and technologies we need if we ever hope to make a new home for humanity on Mars.

3D PRINTERS THAT CAN CREATE EVERYTHING AVAILABLE IN A DOCTOR’S OFFICE

2

Printing with a 3D printer at Makers Party: Via WikiMedia

As astronauts will be alone and cannot bring all the supplies for a lengthy stay on the Red Planet, they will need printers that can print out medical equipment, prosthetics, and drugs on demand. Bringing the ingredients for these, and printing out what is needed on site, makes more sense than bringing a few types of equipment and drugs which could only help under limited circumstances.

Astronauts could establish manufacturing by designing printers that can print out other printers. The whole idea of 3D printing is going to be essential to them. It has been shown that customized prosthetics can be printed out, some forms of medical equipment, and even drug used in epilepsy. The basic examples are here already or trends seem to be pointing into this direction. So the future is looking bright.

WEARABLE AND IMPLANTED BODY SENSORS

3

Credit: Professor Takao Someya

Forget smart clothes and devices that can measure your ECG or pulse with a smartphone. On a trip to Mars, every ounce of cargo matters. Without tiny sensors that can measure every important vital sign and health parameter, crew members will not be able to make medical decisions.

Today’s wearable trackers are big, get discharged quickly, and are hard to work with. Astronauts cannot rely on them. Digital tattoos and implanted microchips could do the job without the active participation of astronauts. These would measure every relevant parameter and let them know when there is something they should take care of. The Japanese Professor Someya has been developing such tattoos with his team; as well as the MC10 company.

FULL GENOMIC ANALYSIS TO IDENTIFY ASTRONAUTS’ HEALTH RISKS

Since they won’t have access to proper healthcare for years, knowing what major conditions the Martian astronauts might face would be highly beneficial, indeed, even necessary. A full genome sequencing, assisted by microbiome tests and other lab markers, will let physicians partially predict what major diseases they will probably encounter in their lives and what they can do to try to avoid most of them. This includes what diet to choose based on the types of bacteria they live with and what lab markers to regularly re-check to catch a disease before it would develop.

ARTIFICIAL INTELLIGENCE THAT CAN DRAW CONCLUSIONS FROM LIVE HEALTH DATA

4
IBM’s Watson computer, Yorktown Heights, NY. Via: WikiMedia

No matter how sophisticated sensors are, measurements will not help with day-to-day issues unless there are smart algorithms that can make suggestions. Astronauts will have no constant contact with Earth, and they cannot have all the skills of an experienced physician, researcher, and data analyst.

Algorithms will do this job for them. This will help them get the most out of each day to exploit the theoretical limits of efficiency.

TELEMEDICAL SOLUTIONS THAT ALLOW REMOTE CARE

5
Image credit: ITouch

Even though the distance is big between physicians here and the crew on Mars, high quality communication with specialized caregivers on Earth will be an essential part of their care. As was mentioned, the distance and delay in communication will make it tricky, but from time to time, communication with a real doctor will be absolutely necessary.

While the future of smart algorithms used in healthcare is bright, human supervision will still be a crucial part of making sure they are on the right track. InTouch Health is a good example.

THIN EXOSKELETONS TO AUGMENT HUMAN STRENGTH AND POWER

6
Fortis exoskeleton. Image credit: FORTIS

Lifting huge weights and working tirelessly for long hours will be must-have features on Mars, as astronauts will need to build a base camp. As exoskeletons get thinner and more comfortable, the crew on Mars will use them as frequently as the first astronauts used screwdrivers. Exoskeletons today can already let paralyzed people walk again; let soldiers not get tired of walking for hours or even run faster and jump higher. As long spaceflights weaken their muscles no matter how much they try to exercise in zero gravity, exoskeletons could supply them with the lost strength.

ENGINEERING IN BIOTECHNOLOGY

Astronauts will need to be able to partially engineer life. By life, I mean bacteria, yeast, and even their own immune system if needed. The new genome editing method, CRISPR, could play a major role in this. Systems involving engineering bacteria to produce hormones, antibiotics, or other materials would allow them to use nature as a manufacturing device, even to filter water or create the desired atmosphere. Community labs currently available in California and the iGem competitions have demonstrated in what a wide range of situations bioengineering can offer solutions.

SURGICAL ROBOTS THAT CAN BE OPERATED FROM A DISTANCE

7
Image credit: Weyland

There will be cases, almost inevitably, when astronauts will need to undergo surgery. Current surgical robots that perform big operations are controlled by surgeons through a control panel. The movie Prometheus featured a surgical robot capsule that can perform the whole operation on its own. The Mars generation will require an invention somewhere in between. Surgeons on Earth could pre-plan every step, and the robot could perform those steps while being supervised with the time delay digitally.

I truly believe that humans are discoverers – and the next great enterprise is discovering the cosmos, starting with Mars. At first, the task will fall on a few brave people, and we have to make sure we can keep them safe, healthy, and functioning in an environment that is hostile to human life.

We need to upgrade their health with advancements in digital health to make this possible. Luckily, these breakthrough technologies are all within our reach.

Read more about health technologies we will need to reach Mars and how to start upgrading your own health in my new book, My Health: Upgraded,

Top 10 Medical Technologies of 2016

Every year, I publish my predictions for the coming year. As the Medical Futurist, I’m expected to come up with bright visions and I’m happy to rise to the challenge. Last year my predictions included a digital tattoo, portable diagnostic devices thanks to the XPrize Challenge, IBM Watson’s rise to prominence in analyzing big health data, and brain computer interfaces such as Muse or Thync becoming available to the general public. These visions have since become reality.

It’s time to list the 10 major breakthroughs and trends that will dominate healthcare and medicine in 2016.

1) Virtual Reality

Once The New York Times gave out Google Cardboards with its newspapers, it was clear virtual reality was going mainstream. But now that Facebook’s Oculus Rift just became available for pre-order, virtual reality is going to become a booming industry. With really sophisticated devices on the market, it might have its biggest year ever in 2016. It will be used to let medical students gain realistic experience in examining patients or to let patients see what would happen to them the next day at the hospital for stress release.

1

 

2) Augmented Reality

A Novartis chief announced that the digital contact lens patented by Google would become available in 2016. As it will measure blood glucose from tears, it is supposed to change diabetes treatment and management. Moreover, Hololens from Microsoft also comes out in 2016 which will have a huge impact on fields from medical education to architecture and engineering. It could help medical students do dissections for many hours a day from any angles without the formaldehyde smell.

maxresdefault

3) Fibretronics

2015 was not the year of smartclothes no matter how much we anticipated it. Even the ones with the biggest market potentials like HexoSkin were only traditional shirts with built-in devices in their pockets. But fibretronics are clothing materials with microchips implanted into them. They can react to body temperature or the mood of the wearer, among others. Google has started collaborating with Levi’s to create true fibretronic materials, which could be used to interact with technology through our clothes in novel ways. Imagine this in the OR. As the first promising collaborations in this area came out in 2015, expect to see the first tangible results in 2016!

3

4) Smart Algorithms Analyzing Wearable Data

2015 was the year of wearable health trackers. A swarm of devices became available, Amazon launched its Wearable Marketplace and millions of activity trackers were sold. But gaining actionable insights from the constant stream of wearable data is not easy. We need clever algorithms and apps that merge data from several devices and apps, and help us draw meaningful conclusions. It would help lay people put more emphasis on prevention and have a healthier lifestyle. I had experience with Exist.io, one of the earliest attempts, but it still needs to go a long way.

my gadgets

5) Near-Artificial Intelligence in Radiology

IBM’s Watson supercomputer has been used in oncology to assist medical decision-making. It proved the clear benefits of such a system by making diagnoses and treatment cheaper and more efficient. IBM’s Medical Sieve project aims to diagnose most lesions with a smart software, leaving room for radiologists to focus on the most important cases instead of checking hundreds of images every day.

6) Food Scanners

Food scanners like Scio and Tellspec have been in the spotlight since 2014, but as early developer prototypes have already been mailed to their first users in 2015, 2016 could be the year they become generally available. This would enable anyone to find out what’s really on their plates, providing clear benefits not just to people looking to gain weight or eat healthier food, but people with dangerous allergies as well.  

5

7) Humanoid Robots

One of the most promising companies developing robots is Boston Dynamics, acquired by Google in 2013. Since then, they only released teaser videos about animal-like robots and Petman, the humanoid robot. Many technologies they are working on seem to be at a stage where they are ready to become actual products, the first signs of which we’ll see in 2016.

8) 3D Bioprinting

Organovo has been in the focus because of 3D printing biomaterials for years. They announced successfully bioprinted liver tissues in 2014 and they seemed to be 4-6 years away from printing liver parts for transplantation. But first, these bioprinted livers could be finally used in the pharmaceutical industry to replace animal models when analyzing the toxicity of new drugs. If it goes through in 2016, I feel printing actual liver tissue for transplantation could become a commercial service within the next decade.

9) Internet of Health Things At Home

Last year, I released a concept art of a bathroom of the future. All the elements in that image from the smart toothbrush to the digital mirror were partially available in 2015. But an array of sensors will reach the general public in 2016 making IoT a reality in our homes. The long-term goal is to make these devices communicate and learn from each other. This way we would not have to analyze the data of the devices ourselves, but the device manufacturers could merge their findings and share a digestible report with us when there is something to take care of.

intelligent-bathroom_hi2

10) Theranos – Thumbs Up Or Down

The end of 2015 saw Theranos embroiled in a scandal. The company claims to perform blood tests from one drop of blood in a transparently priced way. Concerns were raised by the Wall Street Journal about the validity of their claims, and we are waiting for Theranos to reveal the details of their technology.

blood-5

Besides these, the new Verily Life Sciences branch of Alphabet and the gene editing method CRISPR might have a big hit in 2016. We will see.

These technologies and trends will create value and have an impact on our lives and the practice of medicine in 2016. To keep an eye on them, subscribe to my newsletter!

11 Things Star Wars Could Learn From Healthcare Today

I’m an enthusiastic Star Wars fan, however, as the Medical Futurist I cannot help but see what medical technologies the episodes featured. The digital health innovations we have today are so amazing that they could even improve the futuristic Star Wars universe. I binge-watched all 7 episodes to find the 11 most interesting technologies we already possess, but Star Wars — despite ubiquitous space travel and lightsabers, does not.

1-7X5TybY68XGvxYJioM3CAA

1. Instant wound healing?

The most obvious discovery was that laser guns are common weapons in Star Wars but there is no instant wound healing, but we have it today. A sponge-filled syringe that was announced in December, 2015, was designed to close up gaping gunshot wounds in seconds.

2. Plastic surgeons?

Between Attack of the Clones and Revenge of the Sith, Anakin Skywalker develops a scar over his right eye. When the scar appeared in Revenge of the Sith, there was no explanation as to how it got there. If he had access to a plastic surgeon, such skin problems could be resolved easily.

3. Anesthesia?

Still in episode 3, when Anakin is burnt and loses his legs, robot surgeons work on him while he is in great pain. I kept on wondering why. They had no painkillers and anesthesia? No cold liquid therapy for the burnt tissue? Moreover, they put the mask on him while the skin was still not intact and susceptible to infections.

1-uOjT5bOqyelpuiG-YHonIg

4. Food scanners?

In the opening scene of Episode 1, Jedi Master Qui-Gon Jinn and his apprentice Obi-Wan Kenobi drink what the droid brings to them without checking exactly what the drink contained. Food scanners such as Tellspec orScio will become available in 2016. These tools can tell us what we have on our plates or in our glasses.

5. Biomarkers?

If midi-chlorians, the microorganisms that reside within all living cells and communicate with the Force, are in the blood and can be measured with handheld tools (as seen in Episode 1), why are there no clear blood biomarkers with which people could be screened to become Jedi apprentices easily?

1-7zjRF2U1LbuxqoMvpP4rCw

6. Diagnostic devices?

Anakin finds his mother by using a really fast vehicle, but when he gets there and his mother is dying, there’s no way to rush for medical help, or to use a hand-held diagnostic device to discover how to treat her?

7. Supercomputers?

In episode 4, Han Solo says it takes a few minutes to get the coordinates from the navicomputer for faster space travel. While there are robots with artificial intelligence and free will such as R2D2, and a robotic midwife in episode 3; there are no smart artificial intelligence systems onboard starships? IBM Watson could easily navigate the Millennium Falcon thousands of times faster.

8. Smart clothes?

In the The Empire Strikes Back, Luke almost freezes to death on the icy planet Hoth. They use state-of-the-art spaceships but there are no smart clothes to keep them warm and safe?

1-ESgB5s5YRFgc0n12d0BEcA

9. Skin tissue on robot prosthetics?

The fact that Luke’s arm didn’t bleed when Darth Vader cut it off, no matter how the lightsaber could cauterize his skin and tissues, is one thing, but Luke’s robotic arm in episode 6 looks much more lifelike than Anakin’s metal one in episode 2. I guess a prosthetics startup could have disrupted the galaxy’s industry in the meantime. A few more years and Organovo could print out skin tissue with their 3D bioprinters in real.

10. Cloning issues?

Stormtroopers featured in Episode 2 were cloned from bounty hunter Jango Fett and look alike. But this doesn’t mean that they should have the exact same phenotype, an individual’s observable traits, in their adulthood. Genetics loads the gun, lifestyle pulls the trigger — meaning even though two people might have the same genetic background, but the chance of being exactly the same physically is very small. Look at identical twins who grew up in different environments.

11. Symptoms after waking up from carbonite hybernation?

Finally, when Han Solo wakes up from the carbonite state, he should be feeling way worse than he does on screen. Symptoms would include serious vomiting, dehydration, headache and even more. He might have been lucky to “only” temporarily lose his vision.

1-7H7oTthUaU_80fCdd1DNig

There are also some good ideas though. In the underwater scenes of episode 1, Jedi Master Qui-Gon Jinn and Obi-Wan Kenobi wear a device on their mouths that lets them breath in water. When Padmé gives birth to Leia and Luke in episode 3, the movie features a weirdly shaped, quite futuristic birth bed and a robotic midwife armed with artificial intelligence is overseeing the whole process.

If you watch the episodes again by and keep your eyes open, you might catch even more ways our world could help the one of Rey, Luke and Han Solo. Until then, I keep on being a fan and cannot wait to think about what futuristic medical solutions the new episodes will feature.

Subscribe to The Medical Futurist newsletter to receive more analyses about the future of medicine and healthcare.

There Will Be No Mars Generation Without These Technologies

I wrote an article about what digital health technologies the Mars Generation will need to survive the journey to the Red Planet. It is published on Futurism.

Screen Shot 12-07-15 at 06.46 PM

An excerpt:

NASA is set to send astronauts to orbit Mars and return them safely by the mid 2030s. And a manned landing on the Red Planet will soon follow. However, this work will be in vain if health technology does not advance.

You can read about these technologies on Futurism:

  1. Medical 3D printers
  2. Wearable and implanted body sensors
  3. Full genomic analysis
  4. Artificial intelligence that draws conclusions from health data
  5. Telemedical solutions for remote care
  6. Thin exoskeletons
  7. Engineering in biotechnology
  8. Surgical robots

What Does The Theranos FDA Approval Mean?

Elizabeth Holmes left Stanford and founded Theranos in 2003. The company is based on an invention related to cheap and fast blood tests. It is said to require only a droplet of blood. I would be the happiest person if it could work like they state but the company has refused to reveal details about the technology because of business secret. They already have available services though in Walgreens over the US.

ScreenShot

Now, out of nowhere, the FDA approved its Herpes virus test.

As part of the approval, the U.S. Food and Drug Administration and the company are also making public for the first time details about precisely how the famously secretive business performs the particular test being approved—in this case, an assay to detect the sexually transmitted disease herpes simplex virus (HSV-1).

Theranos is fighting in the front line of the battle of digital health and biotech innovation, but it’s hard to follow them with trust without knowing what weaponry they have. A company that is ready to take responsibility in this battle would provide information to the scientific community. At least, something to chew on.

How Robots Could Help Beat Ebola

I recently had a radio interview on NPR Health about how I think robots could and should be used in dealing with the ebola outbreak.

You can listen to the interview and read my lines here.

A crucial reason Ebola hasn’t taken off more widely in the United States and elsewhere is that it’s spread only by direct human-to-human contact involving bodily fluids. What if technology could create distance between the virus and the health care worker – remove the human touch?

shutterstock_119131810

The Guide to the Future of Medicine is Available: Download the E-book for Free!

I cannot tell you how happy I’m to announce the official release of my book, The Guide to the Future of Medicine which was just made available in black & white paperback, colored paperback and Kindle formats. Moreover, the Kindle format is for free (yes, totally free) until the 6th of September.

It contains over one year of hard work, 70 interviews and 22 trends that will shape the future of medicine including Augmented Reality, Surgical and Humanoid Robots, Genomics, Body Sensors, The Medical Tricorder, 3D Printing, Exoskeletons, Artificial Intelligence, Nanorobots, Virtual–Digital Brains, The Rise of Recreational Cyborgs or Cryonics and Longevity.

Through these, I challenged myself to prove that it is possible to use more and more disruptive technologies in medicine while successfully keeping the human touch.

With Lucien Engelen’s foreword, the many examples and extraordinary stories depicted in the book, you will hopefully get a clear picture where medicine and healthcare are heading at the moment, and more importantly, what we can do as patients, medical professionals or policy makers to prepare for the waves of change.

Please use the #medicalfuture hashtag on Twitter and tell me what you think!

The Guide to the Future of Medicine ebook cover

Follow

Get every new post delivered to your Inbox.

Join 60,997 other followers

%d bloggers like this: