Skip to content

Posts from the ‘Video’ Category

Top 10 Medical Technologies of 2016

Every year, I publish my predictions for the coming year. As the Medical Futurist, I’m expected to come up with bright visions and I’m happy to rise to the challenge. Last year my predictions included a digital tattoo, portable diagnostic devices thanks to the XPrize Challenge, IBM Watson’s rise to prominence in analyzing big health data, and brain computer interfaces such as Muse or Thync becoming available to the general public. These visions have since become reality.

It’s time to list the 10 major breakthroughs and trends that will dominate healthcare and medicine in 2016.

1) Virtual Reality

Once The New York Times gave out Google Cardboards with its newspapers, it was clear virtual reality was going mainstream. But now that Facebook’s Oculus Rift just became available for pre-order, virtual reality is going to become a booming industry. With really sophisticated devices on the market, it might have its biggest year ever in 2016. It will be used to let medical students gain realistic experience in examining patients or to let patients see what would happen to them the next day at the hospital for stress release.

1

 

2) Augmented Reality

A Novartis chief announced that the digital contact lens patented by Google would become available in 2016. As it will measure blood glucose from tears, it is supposed to change diabetes treatment and management. Moreover, Hololens from Microsoft also comes out in 2016 which will have a huge impact on fields from medical education to architecture and engineering. It could help medical students do dissections for many hours a day from any angles without the formaldehyde smell.

maxresdefault

3) Fibretronics

2015 was not the year of smartclothes no matter how much we anticipated it. Even the ones with the biggest market potentials like HexoSkin were only traditional shirts with built-in devices in their pockets. But fibretronics are clothing materials with microchips implanted into them. They can react to body temperature or the mood of the wearer, among others. Google has started collaborating with Levi’s to create true fibretronic materials, which could be used to interact with technology through our clothes in novel ways. Imagine this in the OR. As the first promising collaborations in this area came out in 2015, expect to see the first tangible results in 2016!

3

4) Smart Algorithms Analyzing Wearable Data

2015 was the year of wearable health trackers. A swarm of devices became available, Amazon launched its Wearable Marketplace and millions of activity trackers were sold. But gaining actionable insights from the constant stream of wearable data is not easy. We need clever algorithms and apps that merge data from several devices and apps, and help us draw meaningful conclusions. It would help lay people put more emphasis on prevention and have a healthier lifestyle. I had experience with Exist.io, one of the earliest attempts, but it still needs to go a long way.

my gadgets

5) Near-Artificial Intelligence in Radiology

IBM’s Watson supercomputer has been used in oncology to assist medical decision-making. It proved the clear benefits of such a system by making diagnoses and treatment cheaper and more efficient. IBM’s Medical Sieve project aims to diagnose most lesions with a smart software, leaving room for radiologists to focus on the most important cases instead of checking hundreds of images every day.

6) Food Scanners

Food scanners like Scio and Tellspec have been in the spotlight since 2014, but as early developer prototypes have already been mailed to their first users in 2015, 2016 could be the year they become generally available. This would enable anyone to find out what’s really on their plates, providing clear benefits not just to people looking to gain weight or eat healthier food, but people with dangerous allergies as well.  

5

7) Humanoid Robots

One of the most promising companies developing robots is Boston Dynamics, acquired by Google in 2013. Since then, they only released teaser videos about animal-like robots and Petman, the humanoid robot. Many technologies they are working on seem to be at a stage where they are ready to become actual products, the first signs of which we’ll see in 2016.

8) 3D Bioprinting

Organovo has been in the focus because of 3D printing biomaterials for years. They announced successfully bioprinted liver tissues in 2014 and they seemed to be 4-6 years away from printing liver parts for transplantation. But first, these bioprinted livers could be finally used in the pharmaceutical industry to replace animal models when analyzing the toxicity of new drugs. If it goes through in 2016, I feel printing actual liver tissue for transplantation could become a commercial service within the next decade.

9) Internet of Health Things At Home

Last year, I released a concept art of a bathroom of the future. All the elements in that image from the smart toothbrush to the digital mirror were partially available in 2015. But an array of sensors will reach the general public in 2016 making IoT a reality in our homes. The long-term goal is to make these devices communicate and learn from each other. This way we would not have to analyze the data of the devices ourselves, but the device manufacturers could merge their findings and share a digestible report with us when there is something to take care of.

intelligent-bathroom_hi2

10) Theranos – Thumbs Up Or Down

The end of 2015 saw Theranos embroiled in a scandal. The company claims to perform blood tests from one drop of blood in a transparently priced way. Concerns were raised by the Wall Street Journal about the validity of their claims, and we are waiting for Theranos to reveal the details of their technology.

blood-5

Besides these, the new Verily Life Sciences branch of Alphabet and the gene editing method CRISPR might have a big hit in 2016. We will see.

These technologies and trends will create value and have an impact on our lives and the practice of medicine in 2016. To keep an eye on them, subscribe to my newsletter!

The Future of Gaming Is Here and Will Produce Athletes

A few weeks ago I wrote about future video gamers becoming athletes.

As technology today doesn’t just get upgraded, but improves at an amazing pace; it might have some surprises for us in the coming years. What if video games assisted by virtual reality devices and whole body sensors would increase the experience of being inside a game by moving in real life? What if gamers will have to run in real to let the character in the game run faster? This area is called exergaming and it is about to boom.

Today I saw the announcement about the Omni + Vive/Lighthouse Demo and immediately thought that It’s not just coming, but it’s already here. See it yourself:

This integrated setup results in a fully decoupled first-person shooter experience with two independent pistols. Players can walk forward, backwards and sideways in 360 degrees on the Omni independently from their looking and aiming directions. Just imagine, now you can take out your targets while running backwards, looking forward, and shooting left and right at the same time! This level of freedom of movement in VR is a new milestone for us and creates the fun VR experience we always dreamed of.

leadmagnet_embedded_banner_smallButton3

 

Transporting Lab Samples With Drones? What Else?

The news article of the day award goes to FastCoExist that gave an awful title to its story about how drones could deliver lab samples. They said drones could take urine samples from your own bathroom.

The reason why this issue came up is that getting samples analyzed in big labs is safer than in smaller ones. But because of the distance, drones could do the hard job.

“Currently many, many couriers drive one or two lab samples over long distances (over 50 miles) because there is a medical need for it,” says Amukele. “However, the cost (gas, driver salaries, wear and tear) is incredibly high, especially for rural areas, and makes no sense. This occurs in both rich and poor countries.”

Drones don’t care about poor roads, either, another advantage in rural or developing areas. But the regulation of drones currently stands in the way of using them for medical purposes. Amukele doesn’t see that changing for a decade.

3051839-inline-i-1-future-medical-drones-could-collect-urine-samples-from-your-own-bathroom

Last year, there was a demonstration about using drones in emergency at the University of Delft in the Netherlands.

What else could be delivered by drones?

Medical equipment?

Drugs to rural areas?

What else? Please share your ideas!

leadmagnet_embedded_banner_smallButton3

What I Learnt While Wearing Body Sensors For Three Days

I use a lot of health trackers to give me data therefore I can fine tune my lifestyle to be as healthy as possible. But I need to be able to analyze data and charge them, not even mentioning Bluetooth connections. So I was glad to find Fusion Vital, a company that tries to help people like me by providing them with actionable data regarding their health.

I wore this sensor for three days without interruptions.

006-firstbeat-studio-bg-web-4294-200x300

Here is how it works:

And here is a sample result regarding how stress, physical activity and sleep affected my days and how I could recharge my energy repositories (green means good vibes, and red means stress):

3

Here is the summary of one day:

Screen Shot 10-25-15 at 12.42 PM

Things I learnt:

What I learnt is that measuring simple health parameters and vital signs with devices available today is not enough in making lifestyle decisions.

I also learnt that unless you are a medical professional and a researcher, you will need a report like this to understand what’s going on.

I learnt that collecting data constantly and writing notes about what I do helped a lot in discovering new things in my lifestyle. One example is how games such as Lumosity can refresh me in minutes even during a 10 hours-long work session.

Things I missed:

The sensor is still too big (even though it was comfortable) and de-attached from my skin during running and football sessions.

The report requires a professional to go through it, therefore it’s more about personal coaching than smart algorithms.

Summary:

If you wanted to get a clear picture about your lifestyle and your physical form right now, I would definitely suggest giving it a try for 3 days. You will learn things I’m sure you haven’t known about yourself. Although, I expect them to reduce the size of the sensor and to make the whole process of measuring even smoother.

The era of digital tattoos is coming and it looks quite bright.

leadmagnet_embedded_banner_smallButton3

Will Robots Take Over Our Jobs In Healthcare?

An excerpt from my new book, My Health: Upgraded:

I teach a course about the future of healthcare to medical, public health, and allied students. In one lecture I ask students to design the future of care. They come up with their own ideas. We talk them through those and design the process of care in real time. Doing this I learn a lot each semester about how students think about the future. I had an older student with a previous degree in economics. He had decided to become a doctor at the age of 30. When I spoke about what jobs robots and algorithms might take in the future, he raised his hand and asked whether robots would take over our jobs in healthcare–with a very worried look on his face.

Surgical robots become increasingly precise each day. Man–size robots can lift and move patients and transport them throughout the hospital. I held a PARO therapeutic robot in my arms. It was cute and calmed me. At a conference I once watched how a diminutive robot made an entire audience dance with it. It only takes the Xenex robot 10 minutes to disinfect a patient room with UV light. A robot called Tug works at hospitals in the San Francisco Bay Area. It delivers food and medicine. It picks up waste and laundry. It navigates the halls without crashing into people.

Paro robot

Paro robot

The above student asked about robots, but I think he was really asking about automation. Automation includes robotic devices, robots that look like a human, and algorithms. Silicon Valley investor Vinod Khosla once said something that resonated within the medical community for a long time. He said that technology would replace 80% of doctors because machines, driven by big data and computational power, would not only be cheaper but more accurate and objective than the average doctor. He added that we eventually wouldn’t need doctors at all.

In 2015 the information technology research firm Gartner predicted that one–third of existing jobs will be replaced by software, robots, and smart machines by 2025. Blue collar as well as white collar workers such as financial and sports reporters, marketers, surgeons, and financial analysts were in danger of being replaced. As Martin Ford outlines in Rise of the Robots, healthcare represented less than 6% in the US economy in 1960. Its share had tripled by 2013. The real issue is not utilizing too many robots but too few. Typically robots are expensive but reduce costs. Medicine and healthcare won’t be able to and should not try to avoid this.

If we look at the history of automation the first wave of machines in the 19th century was better at assembling things than people were. The second wave machines were better at organizing things. Today data analytics, cognitive computers, and self–driving cars suggest that they are better at pattern–recognition.

But both the simplest tasks and the most complicated ones require people. By simplest I mean that there is a greater chance a robot can play chess than go upstairs. By complicated I mean that regarding jobs such as managers, healthcare workers, and others related to education or media; humans are still superior at working with, and caring for others humans. Although, making a diagnosis is cheaper with cognitive computers than doing that alone as physicians.

But whether a robot can make an ethical decision is a huge question. An interesting experiment raised this question. In it a small robot was programmed not to let other robots called human proxies, which represented real people, get into the danger zone on a table game. When only one human proxy approached the danger zone, the robot could successfully thwart it. But when two proxies appeared the robot became confused, and in 14 out of 33 trials it wasted so much time trying to decide that both human proxies fell into the hole. Robots cannot make yet the ethical decisions that characterize experienced physicians.

A Robot companion for the elderly

A Robot companion for the elderly

Automation will make the world better and create opportunities for people clever enough to seize them. But healthcare will change. Tasks and procedures that can be automated should be, and will be. Algorithms will make diagnoses based on quantifiable data better than how humans do it now alone. It is easy to automate the fabrication of equipment or the transportation of patients. The challenge comes when empathy and interpersonal interaction comes into play. Robots won’t approach this level of sophistication for a long time.

To answer my initial question: many jobs will be taken over by robots and automation in the coming years. If people whose jobs are replaced cannot acquire new skills or improve their existing ones, they will no longer have a job. Given this possibility we must constantly question what our best individual skills are and what we can do to improve them. Let’s make sure to attend to those skills that make us irreplaceable.

Read more about other 39 exciting questions in My Health: Upgraded.

Upgraded_cover

leadmagnet_embedded_banner_smallButton3

Revolutionary Technologies To Bring A Healthier Future: Part I.

An excerpt from my new book, My Health: Upgraded:

Millions of medical studies and papers exist, making it humanly impossible for physicians to remain current without digital help. Some estimate that starting in 2020, the amount of medical data will double every 73 days. During their life an average individual will generate more than 1 million gigabytes of health–related data. Data sets that large can no longer be analyzed by people. Cognitive computers such as IBM’s Watson can analyze tens of thousands of clinical studies and patient records, and suggest–for a particular patient–possible diagnoses and therapy options from which the physican can then choose. The time saved by crunching this enormous amount of data could be spent on direct patient care.

Radiology devices will soon provide real–time and more detailed images of a patient’s internal organs. Virtual– and augmented reality devices will further improve this. Such images could help surgeons plan their operations more precisely by guiding 3D printers to produce models of a tumor or other abnormality. Such printers could also create economical prosthetics and instruments.

3d-printed-heart-1366x576

Patients can not receive proper medical care if they are unable to wear devices that monitor their vital signs and health parameters at home. Telemedicine services like this are vitally needed in areas that have a shortage of doctors. Without it, care cannot be delivered, patients must miss time from work, or travel to an institution far away. Biotechnology that can produce artificial organs in the lab could elimiate transplantation waiting lists forever. Virtual models could test potential new drugs in seconds instead of having to rely on lengthy and expensive clinical trials with real people as we do now.

New technologies are disruptive and revolutionary because they are less expensive, faster, and more efficient than previous ones.

The question is not whether we should use surgical robots, but how we can let underdeveloped regions access their benefits. It is not whether patients should measure their vital signs at home, but making sure that doing so doesn’t lead to wrong self–diagnosis and harmful self–treatment. It is not whether patients should be able to access their records and medical data, but how to implement and safeguard that access.

In the past we have asked whether to use a certain technology or not. Today we ask how not to overutilize them and still make them accessible to everyone. Ethical issues lie ahead of us, but so do unbelievable advantages. And yet no government, organization, or authority has been able to prepare populations for that. Nonetheless, revolutionary technologies are coming, and we must prepare.

Hundreds of research trends and thousands of real–life examples demonstrate how reality is getting closer to the science fiction depicted in movies. Supercomputers analyze medical records and draw personalized conclusions. They model how the brain works. Microrobots swim in bodily fluids and might perform small operations soon. External robots draw blood from individuals without the need for human interaction. And yet still I lose days from work when I catch a common cold.

For thousands of years physicians have been the pilots in the cockpit while the patient hadn’t even arrived at the airport not having access to their data and the measurements of their body. Now patients are settling into the cockpit due to the swarm of health trackers, but they are not welcome by their physicians. This is the status quo we need to change by putting them there together in an equal partnership. Together they can make better informed decisions.

boeing_777_cockpit

We are at a stage in which the gap between healthcare technology’s potential and what we have in reality has become huge. The only way for human evolution to adjust to the pace of technological change is to embrace disruptive innovations. We need to do so in our jobs as well our healthcare. While robots and the algorithms behind them improve at an increasingly faster pace, we should strive as human beings to improve ourselves and utilize the mind’s utmost creativity. If we cannot make this happen, then we will lose the battle sooner than most skepticists thought.

The changes I propose are not going to happen over our shoulders. Only we, individually, can accomplish that. By upgrading our health to a level not yet seen, and improving the skills that make humans extraordinary we have a chance to retain what’s really important to us while still improving healthcare worldwide.

Upgraded_cover

The Apple Watch ECG in Action: Video

Dr. David Albert, founder of Alivecor, the FDA approved device that measures ECG with a smartphone sent this video to me. He demonstrated how the Apple Watch ECG works in action.

Follow

Get every new post delivered to your Inbox.

Join 61,001 other followers

%d bloggers like this: