Skip to content

Posts tagged ‘Video’

The World’s Most Lifelike Robot Prosthetics

Nicky Ashwell was born without her right arm and now she got equipped with Steeper’s bebionic small hand. This seems to be one of the most sophisticated robotic prosthetics out there. For years, Touch Bionics has seemed to be in the forefront but now there are more competitors.

First UK user receives world’s most lifelike bionic hand: Nicky Ashwell becomes first UK user

First UK user receives world’s most lifelike bionic hand: Nicky Ashwell becomes first UK user

Her bionic hand costs about $11,000 and has 337 mechanical parts and 14 precision grips. Its makers want to transform the lives of 3 million amputees. An excerpt from the article:

“I realized that I had been making life challenging for myself when I didn’t need to,” she continued. “The movements now come easily and look natural. I keep finding myself being surprised by the little things, like being able to carry my purse while holding my boyfriend’s hand.”

With such developments (cost goes down while functionalities improve), soon, all prosthetics will be as futuristic as Luke Skywalker’s bionic hand in the trailer of Star Wars Episode VII (at 00:45 in the video below).

Top 10 Mistakes Made By Science Fiction Movies

I’m a science fiction movie geek therefore I never look for mistakes and errors in those movies. Although in some cases the errors are so obvious they might ruin the whole movie experience. I thought I would collect the 10 most interesting and sometimes surprising mistakes, factual errors and plot holes science fiction movies have made.

  1. Minority Report
  2. The Matrix Reloaded
  3. Hollow Man
  4. Star Trek: First Contact
  5. Fantastic Voyage
  6. Planet of the Apes
  7. Inception
  8. Red Planet
  9. The Thing
  10. Back to the Future Part II

Top 10 Health Parameters You Can Measure At Home!

I receive a lot of message on- and offline about what devices I use to quantify my health. Therefore I decided to list the 10 health parameters I measure and the relevant devices I use. I hope you will find it useful.

Health parameter | Name of the device | Website

  1. Blood pressure | Withings Blood Pressure | Withings.com
  2. Brain activities | Muse | Choosemuse.com
  3. Focus or attention | Puzzlebox Orbit | puzzlebox.io
  4. Sleep | Withings Pulse | Withings.com
  5. Pulse | Wahoo | Wahoofitness.com
  6. Body temperature | CheckMe | viatomtech.com
  7. Daily physical activities | FitBit | fitbit.com
  8. Electrocardiogram (ECG) | AliveCor | alivecor.com
  9. Cardiac fitness | Tinké | zensorium.com
  10. Stress | PIP | thepip.com

The Future of Clinical Trials: Video

An excerpt from The Guide to the Future of Medicine:

Today, new pharmaceuticals are approved by a process that culminates in human clinical trials. The clinical trial is a rigorous process from development of the active molecule to animal trials before the human ones, costing billions of dollars and requiring many years. Patients participating in the trial are exposed to side effects, not all of which will have been predicted by animal testing. If the drug is successful in trial, it may receive approval, but the time and expense are present regardless of the trial outcome.

But what if there were another, safer, faster, and less expensive route to approval? Instead of requiring years of “ex vivo” and animal studies before human testing, what if it were possible to test thousands of new molecules on billions of virtual patients in just a few minutes? What would be required to demonstrate such a capability? At the very least, the virtual patients must mimic the physiology of the target patients, with all of the variation that actual patients show. The model should encompass circulatory, neural, endocrine, and metabolic systems, and each of these must demonstrate valid mechanism–based responses to physiological and pharmacological stimuli. The model must also be cost efficient, simulating weeks in a span of seconds.

Such simulations are called computational cognitive architectures, although the current ones actually lack a comprehensive representation of human physiology. A truly comprehensive system would make it possible to model conditions, symptoms, and even drug effects. To order reach this brave goal, every tiny detail of the human body needs to be included in the simulation from the way our body reacts to temperature changes to the circadian rhythms of hormone action.

HumMod is a simulation system that provides a top–down model of human physiology from organs to hormones. It now contains over 1,500 linear and non–linear equations and over 6,500 state variables such as body fluids, circulation, electrolytes, hormones, metabolism, and skin temperature. HumMod was based on original work by Drs. Arthur Guyton and Thomas Coleman in the early 1970’s.

wkozp1tikkrmfj6tcc0u

HumMod is not the only effort in this area. The Avicenna project, partially funded by the European Commission, aims to construct a roadmap for future “in silico” clinical trials, which would make it possible to conduct them without actually experimenting on people. Other projects use real models instead of computational ones. A liver human organ construct, a physical object that responds to toxic chemical exposure the way a real liver does, was designed at the Gordon A. Cain University. The goal of the five–year, $19 million multi­institutional project is to develop interconnected human organ constructs that are based on a miniaturized platform nicknamed ATHENA (Advanced Tissue–engineered Human Ectypal Network Analyzer) that looks like a CPR mannequin.

It would then be possible to test molecules without risking the toxic effects on humans, and to monitor fluctuations in the thousands of different molecules that living cells produce and consume. The beauty of this project is its plan to connect their working liver device to a heart device developed by Harvard University. If successful, they hope to add a lung construct in 2015 that is being developed at Los Alamos, and a kidney designed by the UCSF/Vanderbilt collaboration by 2016, thus building the first physiological model of a human being piece by piece.

KONYVBORITO_online final s 350

The World’s Most Famous Real-Life Cyborgs

In the future of human mankind, we could have brain implants improving memory and other cognitive skills. We could have implanted magnets or RFID chips in our fingers to replace passwords and keys. We could have exoskeletons boosting our strength, we could be faster, jump higher augmenting a whole range of human capabilities. But augmentation will pose threats and ethical issues to society we have never faced before. It’s important to remain humans though, but use technology to improve our lives.

Let’s see what kind of real-life cyborgs we know of today who might show a good example of where we should find a balance between using technologies with our body but remaining a human being.

1) Neil Harbisson: He has a specialized electronic eye, rendering perceived colors as sounds on the musical scale. So it means it lets him “hear” color. He said „It’s not necessary to hack into the body to become a cyborg. We are all cyborgs already.” He is an artist born with achromatopsia, or extreme colorblindness that meant he could only see in black-and-white, he is now capable of experiencing colors beyond the scope of normal human perception.

1

2) Dr. Kevin Warwick: He is a cybernetics professor in the UK’s University of Reading. He has experimented with different electronic implants since 1998 such as installing a microchip in his arm which lets him operate lights, heaters, computers and lights remotely. He and his work have become one. He is the founder of Project Cyborg using himself as the guinea pig, he’s on a mission to become the world’s most complete cyborg.

5

3) Jesse Sullivan: He became a cyborg when he got equipped with a bionic limb, which was connected through nerve-muscle grafting. Aside from having control over his limb with his mind, he can also feel temperature as well as how much pressure his grip applies.

7

4) Nigel Ackland. After losing a part of his arm during a work accident, he got upgraded. His new arm has a hand that can independently move to grip even delicate objects. He controls the arm through muscle movements in his remaining forearm. The range of movement is truly extraordinary. He can independently move each of his five fingers to grip delicate objects, or even pour a liquid into a glass.

9

5) Jerry Jalava: He lost a finger in a motorcycle accident, and decided to have a 2GB USB port embedded into his prosthetic. It doesn’t upload any information directly into his brain though. He is the perfect example of how you don’t need to be a robotics mastermind to become a cyborg; you can pretty much do it yourself.

12

6) Cameron Clapp: He was 14 when he collapsed and fainted along a railroad track. When the train passed, he unfortunately lost both of his legs plus an arm. He got fitted with a couple of prosthetic legs controlled by his brain with the help of a microprocessor. Since then, he has become an athlete and an amputee activist.

13

7) Professor Steve Mann: He designed a headset that is outfitted with a number of small computers and through it, he can record and play video and audio. He was one of the, if not the first, cyborgs in the world.

14

8) Claudia Mitchell: She became the first woman to become a cyborg when she was outfitted with a bionic limb. Her robotic arm is similar to the one installed on fellow cyborg Jesse Sullivan.

WASHINGTON - SEPTEMBER 14:  Claudia Mitchell demonstrates the functionality of her "bionic arm" during a news conference on September 14, 2006 in Washington, DC. Mitchell is the first female recipient of a "thought controlled bionic arm", an advanced prosthesis, developed by the Rehabilitation Institute of Chicago.  (Photo by Win McNamee/Getty Images)

9) Stelios Arcadiou, also known as Stelarc: He is a performance artist who believes that the human body is obsolete. To prove this, he’s had an artificially-created ear surgically attached to his left arm. In another show, he hooked up electrodes to his body to allow people to control his muscles through the Web.

KONICA MINOLTA DIGITAL CAMERA

They are the world’s most famous real-life cyborgs. Did I miss anyone? You can read more about cyborgs and the future of life in The Guide to The Future of Medicine.

KONYVBORITO_online final s 350

Will The Hospital Of The Future Be Our Home?

The biggest part of healthcare is self care which takes places outside the medical system. I need to manage my health and disease not only in the hospital and during the doctor visits, but also at home. Still when people talk about the future of hospitals, they usually depict amazing technologies and really huge devices.

What if the majority of care could be provided in our homes? What if wearable and other devices could measure what needs to be measured in the bathroom or bedroom? What if smart clothes and brain activity trackers could change the way we work from home?

Let’s see what technologies might transform our home to be the new clinic, the hospital of the future.

The bathroom

It could include a smart scale that measures weight, body fat percentage; recognizes you and sends data immediately to your smartphone. The mirror could be a digital one analyzing your stress levels, pulse and mood just by looking at you. It could present news related to these parameters. You could use a smart toothbrush that could analyze whether you are hydrated or not; and give rewards for spending enough time with that activity. Then in the toilet, there could be a little microchip for urine analysis. When you go into the shower, the smart home could bring the temperature down by using the smart device like Nest acquired by Google. Water quality and quantity, cardiac fitness and a bunch of other things simple devices could measure in the bathroom.

Intelligent bathroom_hi2

The bedroom

It could include smart sleep monitors which first give you data about what quality of sleep you had and then it could wake you up at the best time to make sure you are energized in the morning. When you go to bed, the smart sleep monitor could let the Nest know it should bring the temperature down because you are about to sleep. Such monitors could include specific music and lights to make sure you are gently woken up. Pulse, pulse variability, breathing and oxygen saturation could be measured to reduce sleep apnoe and snoring.

6

The kitchen

There could be smart forks and spoons that either teach us how to eat slowly; or let people with Parkinson’s disease eat properly again. Scanners could measure the ingredients, allergens and toxins in our food and let smartphone applications help control our diet. There could be 3D food printers using fresh ingredients and create pizza, cookies, or almost any kind of final products just like what Foodini does these days.

9

The work desk

You could wear smart clothes measuring vital signs, posture, stress levels and brain activity telling us when exactly to work for better performance. Services such as Exist.io could constantly look for performance tips by finding correlations between our digital habits and health parameters.

12

We can use almost all these devices now and looking ahead into the future the best is just yet to come. The quest is to find those technologies that can really change the way we live our lives by bringing the clinical and hospital equipment to our actual homes providing better care without making the distance between patient and caregiver bigger.

What would you like to measure at home? What do you think about the home becoming the clinic with medical equipment and devices measuring our vital signs and making our lives simpler and better?

Please feel free to read more about the future of hospitals in my new book, The Guide to the Future of Medicine. Thank you!

KONYVBORITO_online final s 350

What Comes After The #Wearable Health Revolution?

The wearable health trackers’ revolution has been going on producing devices that let us measure vital signs and health parameters at home. It is changing the whole status quo of healthcare as medical information and now tracking health are available outside the ivory tower of medicine.

A 2014 report showed that 71% of 16-24-year-olds want wearable technology. Predictions for 2018 include a market value of $12 billion; a shipment of 112 million wearables and that one third of Americans will own at least a pedometer.

statistic_id259372_forecast_-wearable-device-market-value-2010-2018

Now a growing population is using devices to measure a health parameter and while this market is expected to continue growing, devices are expected to shrink, get cheaper and more comfortable. At this point, nobody can be blaimed for over-tracking their health as we got a chance for that for the first time in history. Eventually, by the time the technology behind them gets better, we should get to the stage of meaningful use as well.

Let’s see what I can measure today at home:

  • Daily activities (number of steps, calories burnt, distance covered)
  • Sleep quality + smart alarm
  • Blood pressure
  • Blood oxygen levels
  • Blood glucose levels
  • Cardiac fitness
  • Stress
  • Pulse
  • Body temperature
  • Eating habits
  • ECG
  • Cognitive skills
  • Brain activities
  • Productivity
  • I also had genetic tests and microbiome tests ordered from home.

IV3A9172

What else exists or yet to come? Baby and fetal monitors; blood alcohol content; asthma and the I could go on with this list for hours.

The next obvious step is designing smaller gadgets that can still provide a lot of useful data. Smartclothes are meant to fill this gap. Examples include Hexoskin and MC10. Both companies are working on different clothes and sensors that can be included in clothes. Imagine the fashion industry grabbing this opportunity and getting health tracking closer to their audiences.

2

Then there might be “insideables“, devices implanted into our body or just under the skin. There are people already having such RFID implants with which they can open up a laptop, a smartphone or even the garage door.

Also, “digestables“, pills or tiny gadgets that can be swallowed could track digestion and the absorption of drugs. Colonoscopy could become an important diagnostic procedure that most people are not afraid of. A little pill cam could be swallowed and the recordings become available in hours.

11

Whatever direction this technology is heading, believe me, I don’t want to use all my gadgets to live a healthy life. I would love to wear a tiny digital tattoo that can be replaced easily and measures all my vital signs and health parameters. It could notify me through my smartphone if there is something I should take care of. If there is something I should get checked with a physician.

9

But what matters is finally I can become the pilot of my own health.

Right now patients are sitting in the cockpit of their planes and are waiting for the physicians to arrive.

Insurance companies such as Oscar Health have touched upon this movement and offer incentives and rewards (e.g. Amazon gift card) if the patient agrees to share their data obtained from health trackers. This way motivating the patient towards a healthier life.

There is one remaning step then, the era of the medical tricorder. Gadgets such as Scanadu that can detect diseases and microbes by scanning the patient or touching the skin. The Nokia Sensing XChallenge will produce 10 of such devices by this June which will have to test their ideas on thousands of patients before the end of 2015.

scout-centered

I very much looking forward to seeing the results. Until then, read more about health sensors and the future of portable diagnostics devices in my new book, The Guide to the Future of Medicine.

KONYVBORITO_online final s 350

Follow

Get every new post delivered to your Inbox.

Join 47,621 other followers

%d bloggers like this: